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ABSTRACT

Integrated GPUs have become an indispensable component of
mobile processors due to the increasing popularity of graph-
ics applications. The GPU frequency is a key factor both in
application throughput and mobile processor power consump-
tion under graphics workloads. Therefore, dynamic power
management algorithms have to assess the performance sensi-
tivity to the GPU frequency accurately. Since the impact of
the GPU frequency on performance varies rapidly over time,
there is a need for online performance models that can adapt
to varying workloads. This paper presents a light-weight
adaptive runtime performance model that predicts the frame
processing time. We use this model to estimate the frame
time sensitivity to the GPU frequency. Our experiments on
a mobile platform running common GPU benchmarks show
that the average mean absolute percentage error in frame
time prediction and frame time sensitivity estimation are
3.1% and 3.9%, respectively.

1. INTRODUCTION

Graphically-intensive mobile applications, such as games,
are now one of the most popular smartphone application
categories. There are more than a quarter million games,
which led to several million downloads on Android devices
alone [1]. When running many of these applications, the GPU
power consumption accounts for more than 35% of applica-
tion processor power. It is not always viable to decrease the
GPU frequency to reduce power consumption, since graphics
performance is highly sensitive to the frequency. Therefore,
there is a need for accurate performance models that can be
used to control the GPU frequency judiciously.

The primary GPU performance metric is the number of
frames that can be processed per second, since this number
determines the display frame rate. Therefore, we use the time
the GPU takes to process a frame as the performance metric
in this work. The frame time varies significantly for different
time periods of an application, as shown in Figure 1. Fur-
thermore, it is highly correlated with the GPU frequency and
dependent on the target application. Hence, the frame time is
a multivariate function of the frequency and workload, where
the latter is captured by the performance counters. An accu-
rate GPU performance model can enable us to predict the
change in performance as a function of change in frequency.
The performance model needs to capture the impact of dy-
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Figure 1: The change in frame time for ice-storm application
for (a) 200 MHz and (b) 489 MHz GPU frequencies.
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namic workload variations, and have a low computational
overhead. Combined with a power model, this sensitivity
model can be integrated into dynamic power management
algorithms to select the best GPU frequency [16].

This paper presents a systematic methodology for con-
structing a tractable runtime model for GPU frame time
prediction. The proposed methodology consists of two major
steps. The first step is an extensive analysis to collect frame
time and GPU performance counter data. This analysis
enables us to construct a frame time model template and
select the most significant feature set. Our model employs
differential calculus to express the change in frame time as
a function of the partial derivatives of the frame time with
respect to the GPU frequency and performance counters.
The second step is an adaptive algorithm that learns the
coefficients of the proposed model online. More specifically,
we employ a light-weight recursive least squares (RLS) al-
gorithm to predict the change in frame time dynamically.
RLS is a good choice since the correlation between different
frames decay quickly unlike the fractal behavior observed at
the macroblock level [18]. Besides frame time prediction, we
use our model to predict the frequency sensitivity, which is
defined as the derivative of the frame time with respect to
the GPU frequency. Hence, this information can be utilized
by dynamic power management algorithms, which often have
to make a decision to change the frequency. To validate our
approach, we performed experiments on a state-of-the-art
mobile platform using both custom applications and com-
monly used graphics benchmarks [7]. The experiments show
that the average mean absolute error in frame time and frame
time sensitivity prediction are 3.1% and 3.9%, respectively.

The major contributions of this work are:

e A methodology for collecting offline data and developing
an adaptive GPU performance model,

e A concrete RLS based adaptive runtime performance model,

e Extensive evaluations on a commercial platform using
common GPU benchmarks.

The rest of the paper is organized as follows. Section 2

presents the related work. Section 3 details the challenges and
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Figure 2: (a) Total power consumption when the GPU is rendering Art3 application at 60 FPS. (b) Zoomed portion, which
shows three frames in the first 50ms. (c) Frame time distribution for kernel and power instrumentations for Art3 application.

lays out the groundwork required for frame time prediction.
Section 4 presents the techniques for offline analysis and
online learning. Finally, Section 5 discusses the experimental
results, and Section 6 concludes the paper.

2. RELATED RESEARCH

Dynamic power management techniques require accurate
performance models to decide when and how much the fre-
quency can be slowed down to save power. Therefore, this
work focuses on light-weight performance models that can
guide DPM algorithms in conjunction with runtime power
models [15, 11]. The authors in [2] proposed a framework to
optimize the CPU-GPU efficiency by classifying the applica-
tion phases as rendering and loading. The GPU frequency
governor boosts the GPU frequency during the rendering
phase to improve performance, while reducing the frequency
during the loading phase to reduce power consumption. A
more direct approach to govern GPU performance based
on the GPU frequency and utilization is presented in [16].
However, this model relies on utilization, which is an indirect
measure of the workload, instead of using the performance
counters as it is done in [13]. Both these approaches use
offline data to learn performance models. Another work
on performance modeling [3] uses an auto-regressive (AR)
model for frame time prediction. The authors employ a tenth
order AR model, whose weights were learned offline using ten
minutes of frame time data for each application. Similarly,
the authors in [4] utilize the Least Mean Squares estimation
technique to predict graphics workloads with a simple model
whose features are based on prior frame times. On the one
hand, relying solely on offline data does not generalize well to
other data sets, as it is not feasible to account for all possible
workloads. On the other hand, online learning is challenging
due to limited observability and computing resources. We
address these concerns by providing an efficient technique
for GPU performance prediction.

3. FRAME TIME CHARACTERIZATION

3.1 Challenges and Notation

The first step towards constructing a high fidelity frame
time model is to understand the dependence of the frame
time on the GPU frequency and workload. As mentioned
before, the workload characteristics are captured by the
performance counters x = [3317372, e xN], where N is the
total number of counters. All of these counters are functions
of the frame complexity C, while some of them also depend on
the GPU frequency. Since the frequency changes in discrete
time steps in practical systems, we characterize the frame

time in any given time step k using a multivariate function
tri(fi,xk(fr)). Besides showing the dependency of the
frame time on the frequency and counters, this notation also
reveals that the counters themselves can vary with frequency.

There are two major challenges in the characterization of
trk(fr,%k(fr)). The first challenge is to establish a trusted
reference that provides a rich set of samples of this function.
This set needs to provide the frame time for an exhaustive
list of frequencies and counter values. The second and bigger
challenge is to understand the sensitivity of frame time to
frequency, i.e., finding the partial derivative of the frame
time with respect to the frequency. This information is
vital for dynamic power management algorithms to find out
how the performance would be affected by a change in the
GPU frequency. However, finding the frequency sensitivity
is very challenging, since it requires decoupling the impact
of the change in frame time due to the frequency and frame
complexity. In the rest of this section, we describe our
solutions to address these challenges.

3.2 Frame Time and Counter Data Collection

Frame Time Measurement: Establishing the ground
truth frame time is crucial for both developing the mod-
els and validating them later on benchmarks. Therefore, we
modified Android’s Direct Rendering Manager [5] driver to
mark the times when the GPU starts and completes a new
frame. This enables us to retrieve the frame time and frame
count from the kernel at runtime.

Validation: To validate the correctness of our non-trivial
modification, we also measured the platform power consump-
tion using a data acquisition system. Figure 2a shows the
total power consumed as a function of time when running
a custom target application (Art3) at 60 frames per second
(FPS). By maintaining a low CPU activity, we know that
the peaks in the power consumption occur due to the GPU
activity. For instance, the zoomed version of 50ms time in
Figure 2b shows three frames as expected for 60 FPS and
about 6ms frame time. Hence, we can test the accuracy of
frame time and frame count instrumentations by correlat-
ing them with power measurements. Figure 2c shows the
frame time probability density functions obtained by kernel
instrumentation and power measurements. We observe that
our kernel instrumentation and power measurements yield
only 3% difference in mean frame time. We also find that
the kernel instrumentation is more practical and accurate
than the power measurements, since it does not depend on
external equipment and suffer from measurement noise.
Data Collection: We used the Intel GPU tools [8] to log



the counter values at runtime [10]. Our modified version of
the kernel collects a trace in the format shown below:

Frame Frame GPU Perf. Perf. Perf.

Time Time Count Frequency Cntr 1 Cntr 2 *°° Cntr N

Each row corresponds to a 50ms interval, which matches
the rate at which the frequency governors change the GPU
frequency. We also tested that this data collection does not
induce any noticeable impact on the application performance.

3.3 Decoupling the Impact of Frequency and
Workload

One possible way to isolate the changes due to the GPU
frequency is running the entire application repeatedly at
each supported GPU frequency. Theoretically, the collected
data could be used to identify the effect of GPU frequency
on frame time. However, this approach is intractable for a
number of reasons. First, there may not be a one-to-one
correspondence between the frames in different runs. For
example, consider an application that runs at 60 or 30 FPS
depending on the GPU frequency. At the lower frame rate,
the application will drop the 30 frames that it failed to render,
rather than rendering them later. Second, even processing
the same frame may take different amounts of time due to
the variations in the memory access time from one run to
another, as shown in Figure 3. We observe that frame time
variations grow significantly even if the frame complexity
changes marginally. These challenges are aggravated in many
GPU intensive applications. Therefore, the most reliable
approach to collect reference data is by varying the GPU
frequency while freezing the workload, as described next.
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Figure 3: The frame time distribution obtained for rendering
the same frame and rendering multiple similar frames.

3.4 Data Collection Methodology

As mentioned in the previous section, a consistent apple-
to-apple comparison is possible only if the same frame is
frozen and rendered repeatedly. To facilitate reference data
collection, we built two custom Android applications, Art3
and RenderingTest, as detailed in Section 5.1. These appli-
cations enable us to precisely control the frame content and
target frame rate.

The proposed data collection methodology is shown in
Figure 4. We first set the CPU frequency for the repeatability
of the results. Then, we sweep the GPU frequency across
the set of frequencies supported by the target system. In our
target platform, we used 9 frequencies ranging from 200MHz
to 511MHz, as shown in Figure 4. Each of these combinations
were further repeated for 64 frame complexities, which is
determined by the number and variety of features in a given
frame. We note that different frame complexities enable us

~ GPU
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Figure 4: The proposed methodology for collecting a rich set
of training and test data. Each frame is repeated n, times
for every configuration.

to exercise the performance counters in a controlled manner.
Finally, we run each CPU frequency, GPU frequency and
frame complexity configuration multiple times to suppress
the random variations. In our experiments, we collected 80
samples for each configuration, which led to 2 x 9 x 64 x 80 =
92160 lines with 1152 different configurations.

The proposed methodology is applied to both of our Art3
and RenderingTest applications. Our data set confirms that
the frame time is as a function of both the GPU frequency and
the workload. For example, Figure 5 shows how the frame
time changes with the GPU frequency at a CPU frequency
of 1.3GHz. Different curves on this plot show that increasing
frame complexity implies larger frame time, as expected.
Similarly, Figure 6 shows the relation between the Rendering
Engine Busy counter and the frame time. As the name
implies, Rendering Engine Busy counts the number of cycles
for which the rendering engine was active [10]. We observe
that a larger cycle count (i.e., higher complexity) results in
an almost linear increase in frame time. Different curves on
this plot also show that this counter itself is a function of
the frequency, since it is counting the busy clock cycles.

In summary, our data set enables characterizing the multi-
variate function tpx(fi, Xk (fx)). We use this data at design
time to construct a template for the frame time model. Then,
our online learning algorithm updates the coefficients in this
model to predict the frame time for arbitrary applications.
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Figure 5: Frame time for the RenderingTest application with
increasing GPU frequency at different frame complexities.
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Figure 6: Frame time for the Rendering Test application with
increasing complexity for four different GPU frequencies.



4. FRAME TIME PREDICTION

This section presents the proposed frame time prediction
methodology. We first derive a mathematical model to ex-
press the change in frame time. Then, we describe the offline
learning process needed to select the features that will be
used during online learning. Finally, we present the proposed
adaptive frame time prediction algorithm.

4.1 Differential Frame Time Model

The frame time at any given instant k can be obtained by
summing up the measured frame time in the previous instant
k — 1 and the change in the frame time. This change can
be approximated as a function of the GPU frequency and
performance counters using partial derivatives as follows:

Ot p (fr, xk(fr))
afk

Otr (fr, xk(fr))
+2Wdl’i,k(fk) (1)

dtr(fe,xk(fr)) = dfi,

This equation reveals that the variation in frame time is a
combined effect of the change in the GPU frequency (the
first term), and the changes in the counters, which reflect
the workload (the summation term). Equation 1 holds, if
the frequency and counters are continuous variables. Since
they are discrete variables in practice, we can approximate
the change in frame time as:

3tpk atFk
Az; 2
Af + E O Tk (2)

Atp(fr, xk(fr)) =

Note that Otr/0fr is the partial derivative of frame time
with respect to frequency. The frame time change due to
0x; 1 (fr)/0fk is included in the difference term Ax; . This
equation forms the basis of our mathematical model. The
differential form is useful, since the current frame time is
known, and we are interested in the change. Moreover, it
utilizes the difference of counters, which alleviates the need
for feature normalization. Next, we analyze each term in
detail to derive our frame time model.

Change due to the GPU frequency: In general, the
part of the processing time confined within the GPU pipeline
is inversely proportional with the frequency. However, mem-
ory access and stall times do not scale with the frequency.
Therefore, the frame time is a nonlinear function of the GPU
frequency, as shown in Figure 5. Using this observation, we
can approximate the frame time tr for a given workload
(i-e. x) in terms of a frequency scalable portion tr s and an
unscalable portion tr s as:

tr(fr—1,%) = trs(fr—1,%) + trus(x)

- ()
tF(fk:X)ItF,s(fk—hX)fk =+ s (%)
Tx
Hence, the change in frame time when jumping from fx_1 to
fr can be found by subtracting the first line in Equation 3
from the second line as follows:

0 _ _
a7 e et (72 =) =eo (2 21) o

We note that (f’}—;l -1

time. Since the scalable frame time is in general not known,
we express it as an unknown parameter ag that our online
learning algorithm will learn at runtime.

) can be easily calculated at run

Hardware performance counter change: The frame
time changes linearly with many hardware performance coun-
ters, such as the one shown in Figure 6. If any counters cause
a non-linear change in frame time, they can be taken as piece-
wise linear. Thus, we express the second term in Equation 2,
i.e., the change in frame time with counters as:

Z giFk sz k= ZaiAxi,k (5)

= =1

AtF Xk

where a;’s are the coeﬂiments that change at runtime as a
function of the workload. Therefore, they are learned online.

By combining Equation 4 and Equation 5, we can re-write
our mathematical model in Equation 2 as:

Atp g (fre, Xk (fr)) = ao (fki1
fx

N
_ 1) + > aidzk(fr)  (6)

i=1
We use Equation 6 for online frame time prediction. The
term (f’}—;l - 1) and the change in counters form the feature

set hy, while the parameters a € RN*! are learned online.

4.2 Feature Selection

Real-time prediction requires an extremely efficient learn-

ing algorithm to facilitate fast evaluation of a GPU frequency
change. One approach to reduce the overhead of regression is
dimensionality reduction on the input data. The goal of this
approach is to reduce the complexity of the data and speed up
computation, while maintaining a good prediction accuracy.
In addition to algorithm efficiency, this can help remove the
features that either add duplicate information to the output
or do not change with our parameters. There are several
reduction techniques including Least Absolute Shrinkage and
Selection Operator regression (Lasso), Sequential Feature
Selection (SFS), and Principle Component Analysis (PCA),
which reduce the feature size in the model appropriately by
selecting the most representative set of features. Choosing
a specific technique for feature selection can depend on the
data and application area.
Lasso regression: We used Lasso regression to minimize
the mean squared error (MSE) with a bound on the /1 norm
of parameters a; [6]. The results from Lasso regression are
highly sparse due to I; nature of the bound. Therefore, if
less sparsity is required, it is also possible to use elastic nets
or ridge regression by varying the distribution of [; and [z
norm penalties on the learning parameters. For P samples
the Lasso regression can be performed by minimizing the
MSE between the actual change in frame time Atg; and
using the estimate from Equation 6 after adding a /; norm
penalty as,

P f N 2
= argminz (AtF’k —ag (71};1 — 1) —Z aijj,k(fk)>
i=1

¢ k=1
N
FAD ail (7)
i=0

By increasing the value of A, less features can be selected at
the expense of accuracy. An acceptable loss in accuracy is
about one standard error more than the minimum MSE.

Sequential Feature Selection (SFS): The SFS algorithm
is a heuristic that adds features to an empty selection set in
a stepwise manner to minimize the MSE in the prediction
of a variable like GPU frame time. The result from SFS is
close to the result of Lasso regression, but SFS is completely
oblivious to the multi-collinearity in the feature set. Since
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Figure 7: Adaptive filtering approach showing the update in
parameters a; based on error between the actual change in
frame time and prediction.

SFS is only concerned with the minimization of the MSE
criterion, it is not an ideal methodology when the features
are correlated. However, it can be faster to use in the case
where the feature set is very large and known to have mostly
uncorrelated features [19].
Principle Component Analysis: The PCA algorithm
can help remove the low variance dimensions by centering,
rotating and scaling the data along the eigenvectors. The
eigenvectors corresponding to larger eigenvalues are retained
and the rest are pruned. The retained eigenvectors are then
used for transforming the original data [12]. One drawback
of PCA is that it gives features in the transformed domain.
We implemented Lasso, SF'S and PCA. In what follows,
we present the results obtained with Lasso, because our goal
is to achieve high sparsity on a correlated feature set while
preserving the original meaning of the features. Thus, during
the learning phase we will regress on M feature subset, where
M << N 41, instead of N + 1 features. Note that a trivial
method to choose the number of features can lead to an
increase in overhead or poor predictions.

4.3 Online Learning

The parameters in Equation 6 can be learned offline and
then used at runtime. However, it is hard to generalize offline
learning to all possible applications that would be executed
by the system. Moreover, the workload can change as a
function of user activity. Therefore, the learning mechanism
should not completely rely on offline learning. We employ an
adaptive algorithm to learn the parameters of the frame time
model. In particular, we use the Recursive Least Squares
estimation technique [14]. RLS algorithm updates the pa-
rameters a; in Equation 6 in each prediction interval, as
described in Figure 7, using the following set of equations:

ak = ar—1 + Gr[Atpk(fr, xk(fr)) —hiar—]  (8)
Gi =Py 1hg[h{Py_1h, + 17" 9)

P, = [I — Gxh{ Py, (10)

The update rule given in Equation 8 computes the prediction
error by subtracting the frame time prediction from the
actual change in frame time. Note that online learning
would not be possible without our kernel instrumentation,
which provides reliable reference measurement at runtime
(Atpk(fr,xk(fr))). Equation 9 and Equation 10 update the
gain Gy and covariance Py matrices using the feature vector.
We refer the reader to [14] for details of the RLS algorithm.
Computational complexity: RLS is well known for giving
good predictions in the signal processing field, however, its
computational complexity grows with number of features as

O(M?) [17]. Nonetheless, we minimize the size of the feature
set using feature selection to reduce the complexity of RLS.
In particular, when we shrink the number of features from
38 to 4, the computational complexity reduces by about 90
times. Furthermore, matrix inversions are the main source of
complexity in many algorithms, including RLS. Our solution
is to use the co-variance form of RLS which does not per-
form matrix inversion. The value hEPk_lhk in Equation 9
evaluates to a scalar, which eliminates the overhead of the
inversion operation.

4.4 Frame Time Sensitivity

Previous section explained how we predict the change
in frame time Atpi(fr—1 — fr) by continuously learning
the parameters a,_; and our feature set. DPM algorithms
often need to evaluate the impact of a frequency change on
performance before making any decision. This information
together with power sensitivity to frequency can help DPM
algorithms to make better decisions. This section explains
how our frame time prediction technique is used for this
purpose.

As an example, consider a scenario where the GPU fre-
quency at time k is fr = 400 MHz. Suppose that a DPM
algorithm needs to predict the change in frame time when
the frequency goes from f; = 400 MHz to a candidate fre-
quency fnew = 444 MHz. Before finalizing this decision, the
DPM algorithm needs to evaluate the corresponding change
in frame time, i.e., Atrr(fx = fnew) using Equation 6. In
this equation, the frequency change affects the first term
(% — ) and only the counters that are a function of the
frequency. To make the latter more explicit, we can write
the change in counters due to the GPU frequency f and the
frame complexity C as:

ai‘i,k
oC

81’i,k
of

Since the frame sensitivity is calculated for a given frame,
the change in complexity AC' = 0, and Equation 6 can be
written as:

Az~ Afi + AC, for 1<i<N (11)

Sk N (O
AtF(fk —>fnew) =~ aop (T —1>+Zai( af: (fnew_fk))
new i=1

(12)

In Equation 12, fi, fnew, and a; are known at time step
k. The only unknown value is %, which is zero for fre-
quency independent counters. To model the derivative of
the frequency dependent counters with respect to the GPU
frequency, we can use a nonlinear function of frequency and
frequency independent counters. Then, this model can also
employ an online learning, such as RLS, or it can be learned
offline. Subsequently, Equation 12 can be used to predict the
change in frame time for the new candidate frequency as:

dtl ~ AtF(fk — fnew)
df - fnew - fk (13)

5. EXPERIMENTAL RESULTS

This section first describes the experimental setup and the
results of offline feature selection. Then, we demonstrate
the accuracy of the proposed online frame time prediction
technique, and its potential impact on DPM algorithms.



5.1 Experimental Setup

We performed our experiments on the Minnowboard MAX
platform [9] running Android 5.1 operating system with the
kernel modifications mentioned in Section 3.2. This platform
has two CPU cores and one GPU, whose frequency can take
the values listed in Figure 4. The GPU frequency is readily
available from the kernel file system. In addition to this,
we used the Intel GPU Tools as an external module to the
Android system to trace the GPU hardware performance
counters.

Standard Benchmarks: We validated the proposed frame
time prediction technique using the following commonly used
GPU benchmarks: Nenamark2, BrainltOut, and 3DMark
(both the Ice Storm and Slingshot scenarios).

Custom Benchmarks: The accuracy of the frame time
prediction can be tested without any limitations, since our
frame time prediction technique works for any Android app
that can run on the target platform. However, validating the
sensitivity prediction (i.e., the derivative of the frame time
with respect to the frequency) requires reference measure-
ments taken at different frequencies. This golden reference
cannot be simply collected by running the whole application
at different frequencies due to the reasons detailed in Sec-
tion 3.2. Therefore, we also developed RenderingTest and
Art3 applications that enable us to control the number of
times each frame is repeated.

The RenderingTest application accepts two inputs that
specify the number of cubes rendered in the frame, and the
number of times the same frame is processed. By changing
the number of cubes, we control the frame complexity. In our
experiments, we swept the number of cubes from 1 to 64, and
repeated each frame 80 times. The cubes were rendered at a
maximum of 60 FPS with vertex shaders and depth buffer-
ing enabled. Since we used the RenderingTest application
for offline characterization, we developed one more custom
application, called Art3, which renders pyramids with a dif-
ferent rendering pipeline. The RenderingTest application
renders each cube with its own memory buffer, while Art3
concatenates all pyramids into the same memory buffer be-
fore rendering. The pyramids are not constrained by an FPS
limit, but they are also rendered with vertex shaders and
depth buffering. These two application allow us to compute
and store the reference sensitivities, such that they can be
used as the golden reference to validate our online frequency
sensitivity predictions.

5.2 Feature Selection using Lasso Regression

We applied Lasso regression with 100—fold cross-validation
on our large dataset collected from the RenderingTest appli-
cation. Figure 8a shows the change in mean squared error
between the predicted and measured frame time of the GPU.
As ) in Equation 7 increases, the penalty on the cost func-
tion increases leading to higher MSE. The minimum value,
Amin = 5.1 x 10™% uses all the features, as shown in Figure 8b.
To shrink the model, a good choice is Asel = 1.6 x 107! for
which the performance in terms of expected generalization
error is about one standard error of the minimum. In our
experiments, the number of features for Ag turns out to be
four. The four selected features are change in the frequency
term from Equation 6 and change in the Aggregate Core Ar-
ray Active, Slow Z Test Pizels Failing, and Rendering Engine
Busy counters. The Aggregate Core Array Active counter
gives the sum of all cycles on all the GPU cores spent ac-
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Figure 8: Cross-validated LASSO regression result for; (a)
the change in mean squared error of the frame time prediction
with increasing A values, and (b) the change in the number
of selected features with increasing A values.

tively executing instructions. The Slow Z Test Pixels Failing
counter gives the pixels that fail the slow check in the GPU.
Both of these counters do not change with frequency, they are
functions of frame complexity. On the other hand, the Ren-
dering Engine Busy counter changes with frame complexity,
as well as frequency.

5.3 Online Frame Time Prediction

We validated our frame time prediction approach first
on the RenderingTest application to test the corner cases.
Figure 9 shows the comparison between the actual and the
predicted frame time. During the first 5 seconds, both the
GPU frequency and frames change randomly. We observe
that the proposed online model successfully keeps up with
the rapid changes. In order to test our approach under corner
cases, we enforced a saw-tooth pattern during the remain-
ing duration of the application. More precisely, the GPU
frequency starts at 200 MHz, and the complexity increases
from 1 to 64 in increments of one (the first tooth). Then,
the same iterations are repeated for 9 supported GPU fre-
quencies. Figure 9 demonstrates that we achieve very good
accuracy when the frequency stays constant for a period
of time. Moreover, the high accuracy at the edges shows
that the proposed adaptive algorithm works well when there
is a large jump in complexity. Overall, the mean absolute
percentage error between the real and predicted values of
the frame time is 1.7%.

We obtained similar levels of accuracy for Art3 and stan-
dard benchmarks. In particular, Figure 10 shows the actual
and predicted frame times for 3DMark’s Ice Storm bench-
mark at two different GPU frequencies. We achieved a high
prediction accuracy with the mean absolute error of 2.4%
and 6.6% for the GPU frequencies 200 MHz and 489 MHz,
respectively. Similarly, the actual and predicted frame time
for the BrainltOut gaming application with fixed GPU fre-
quency is shown in Figure 11. This interactive game requires
frequent user inputs, the frame time exhibits more sudden
changes compared to other applications. Our frame time
prediction matches closely to the actual frame time with the
median and mean absolute percentage errors of 1.9% and
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Figure 9: Frame time prediction for the RenderingTest app.
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Figure 10: Frame time prediction for the 3DMark Ice Storm
application running at (a) 200 MHz, (b) 489 MHz.
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Figure 11: Frame time prediction for the BrainltOut appli-
cation.

8.7%, respectively. Note that, the higher mean absolute error
value for the BrainltOut application is due to a few outliers in
the frame time. This is confirmed from the very low median
absolute percentage error value of the benchmark.

The frame time prediction for all of the benchmarks run-
ning over all GPU frequencies is summarized in Figure 12.
The average median and mean absolute errors across all the
benchmarks are found as 1.4% and 3.1%.

We also compared our approach with an offline method,
where all the model parameters are learned at design time
and remained constant at runtime. Figure 13 shows the
median absolute percentage errors for online (dashed line)
and offline (solid line) learning for different training ratios.
When we run all the benchmarks one after the other with our
online learning mechanism we get an error of 1.4%. However,
running the same benchmarks with offline learned parameters
leads to higher errors. As shown in the figure, the difference
between the offline and online errors decreases as the training
ratio approaches one, i.e., when the training set equals the
test set. This shows that the prediction errors are generally
higher when the parameters are learned offline in contrast to
online, unless the model can be trained on all the applications.
Of note, the prediction error of our approach is flat, since
the same set of features are selected with smaller training
set.

5.4 Potential Impact for Dynamic Power
Management

In this section, we demonstrate the accuracy of our frame
time sensitivity prediction presented in Section 4.4. In our
feature set for frame time prediction, only the Rendering En-
gine Busy counter is a function of frequency. After performing

extensive analysis, we modeled the frequency dependence of

this counter ag;dep empirically as a function of the frequency

f, and two frequency independent counters HIZ Fast Z Test
Pizels Passing and 3D Render Target Writes.
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Figure 12: Median and mean absolute percentage errors in
the frame time for the Android applications.
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Figure 13: Comparison of median absolute percentage error
in frame time for all Android applications combined.
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Then, we applied offline learning to characterize the o and
B coefficients in this equation. We could use also online
learning, but we opted for offline learning for three reasons.
First, we observed that the change in the counters as a
function of the frequency is much less dynamic than the

frame time. Second, it is harder to obtain a clean reference

for (%ad“p at runtime, unlike the frame time which is obtained

through instrumentation. Finally, this choice implies less
computational overhead at runtime.

Figure 14 shows the real and predicted values of the deriva-
tive of this counter with respect to frequency for Render-
ingTest application. The root mean squared error of our
prediction is 0.03, while the data range is [—0.6,0.4]. Thus,
Equation 14 provides a good approximation of this derivative.
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Figure 14: Offline prediction of the derivative of Rendering
Engine Busy counter with respect to GPU frequency.

To assess the accuracy of our sensitivity prediction, we
predict the change in frame time as a result of increasing (or
decreasing) the frequency. Then, we compute the frame time
sensitivity using Equation 13. We started with changing
the frequency by one level according the supported GPU
frequencies listed in Figure 4, e.g., changing fepy from
fr = 400 MHz to frnew = 444 MHz or fnew = 355 MHz.
Figure 15 shows the predicted and actual frame time when
the new frequency fnew is one level higher. The mean absolute
percentage error for this prediction is 1.5%. We observed
similar results when frew is one level lower. One might
argue that the high prediction accuracy is only due to single
frequency jumps like 400 MHz to 444 MHz. Therefore, we
repeated our experiments for multiple frequency jumps. For
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Figure 15: Predicted and actual frame times for Render-
ingTest application when fpew is one level higher.

example, if current frequency is 200 MHz, then a frequency
jump of three implies fnew is 311 MHz. Figure 16 shows that
the accuracy indeed degrades, but even when the number of
frequency levels is six, the error is less than 7.5%.
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Figure 16: Frame time prediction error in Rendering Test
application for multiple frequency jumps.

We present the accuracy in predicting the derivative of
frame time with respect to GPU frequency for the Render-
ingTest application in Figure 17 . The root mean squared
error in these predictions are 4.0 x 1072 and 4.4 x 1072 for
frequency jumps of one level higher and lower, respectively.
As seen from this plot, the slope starts with a negative value
and then diminishes to zero on increasing frequency. This is
consistent with the observation in Figure 6.

In addition to running the RenderingTest application we
ran Art3 as well to measure frame time sensitivity. Figure 18
shows that the predicted derivative of frame time with respect
to GPU frequency follows the reference values closely. In
particular, the root mean squared error for the frame time
sensitivity to frequency were 2.3 x 1073 and 2.7 x 1072 for
frequency jumps of one level higher and lower, respectively.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a methodology that combines
offline data collection and online learning. We constructed
an RLS based adaptive runtime performance model using
this methodology. Extensive evaluations on a commercial
platform using common GPU benchmarks resulted in average
mean absolute errors of 3.1% in frame time and 3.9% in frame
time sensitivity prediction. This high accuracy model can
help predict the sensitivity of the frame processing time to
frequency, which is important for DPM algorithms. As future
work, we plan to integrate the proposed runtime model into
a sophisticated DPM algorithm.
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