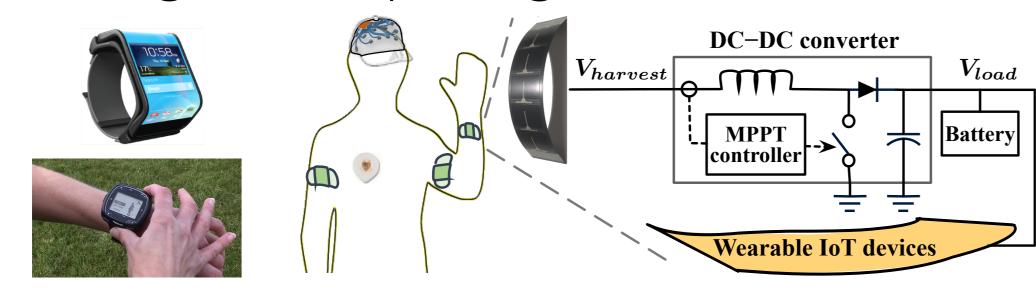
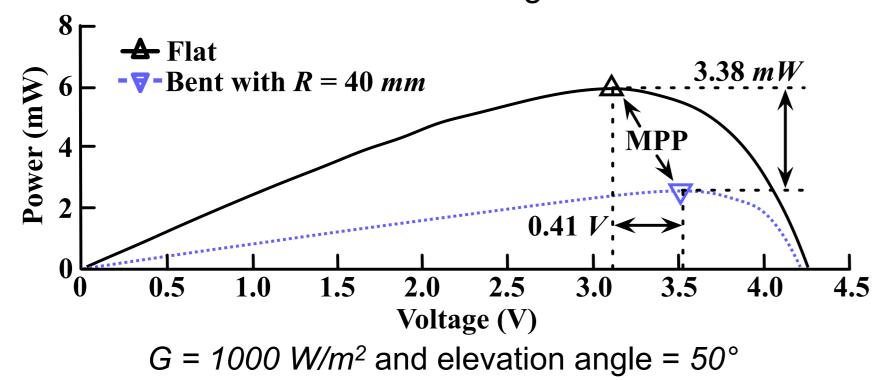


Flexible PV-cell Modeling for Energy Harvesting in Wearable IoT Applications

Jaehyun Park, Hitesh Joshi, Sayfe Kiaei, Umit Y. Ogras

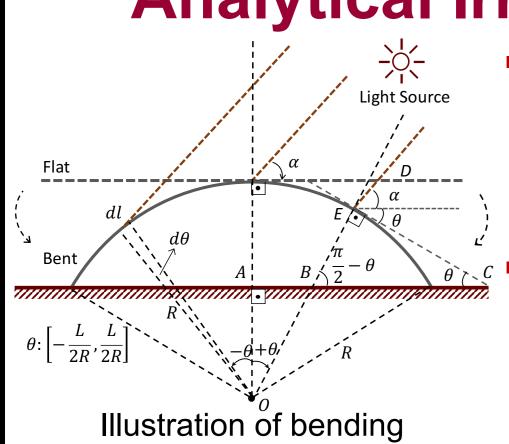

Hyung Gyu Lee

Arizona State University


Daegu University

Motivation

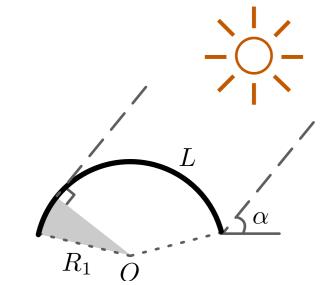
- A flexible PV-cell can power wearable IoT devices
 - 10–100 *mW/cm*² @ outdoor 100 *μW/cm*² @ indoor



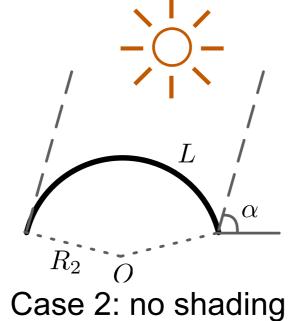
- Bending a flexible PV-cell has a significant impact on the harvested power
 - R = 40 mm radius of curvature leads to 57% degradation in maximum generated power

We proposed the first analytical model that quantifies this behaviour [1]

Analytical Irradiation Model with Bending

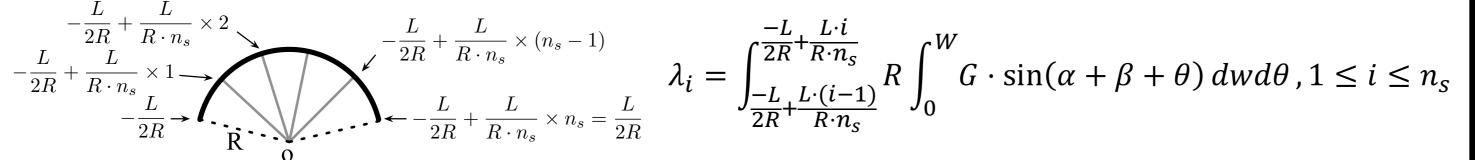

The irradiation at the PV-cell surface is expressed as:

$$\lambda = \int_{-L}^{L/2} \int_{0}^{W} G \sin(\alpha + \beta) dw \, dl$$

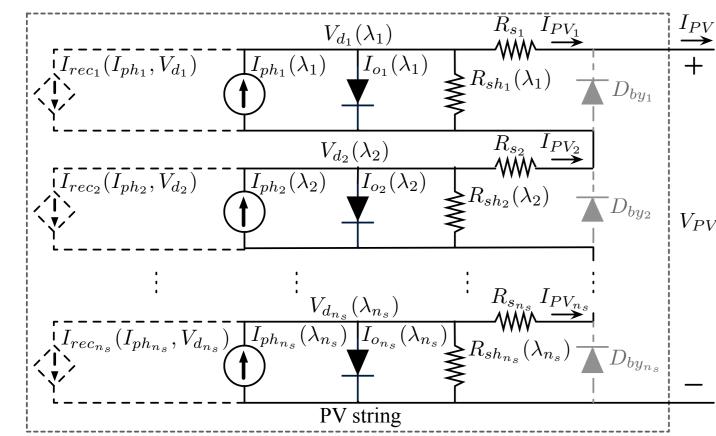

The radiation received by the bent PV-cell is expressed as:

$$\lambda_{bent} = \int_{\frac{-L}{2}}^{\frac{L}{2}} R \int_{0}^{W} G \sin(\alpha + \beta + \theta) dw d\theta$$

Parts of the PV-cell can be shaded from the light source


Case 1: single-side shading

Case 3: both side shading $\lambda_{bent.1} = \int_{-(\alpha+\beta)}^{\frac{L}{2R_1}} R_1 \int_{0}^{W} G \cdot \sin(\alpha+\beta+\theta) \, dw d\theta = W \cdot G \cdot R_1 \left(1 - \cos\left(\alpha+\beta + \frac{L}{2R_1}\right)\right)$ $\lambda_{bent.2} = \int_{\frac{-L}{2R_2}}^{\frac{-L}{2R_2}} R_2 \int_0^W G \cdot \sin(\alpha + \beta + \theta) \, dw d\theta = 2W \cdot G \cdot R_2 \sin(\alpha + \beta) \sin(\frac{L}{2R_2})$


 $\lambda_{bent.3} = \int_{-(\alpha+\beta)}^{\pi-(\alpha+\beta)} R_3 \int_{0}^{W} G \cdot \sin(\alpha+\beta+\theta) \, dw d\theta = 2W \cdot G \cdot R_3$

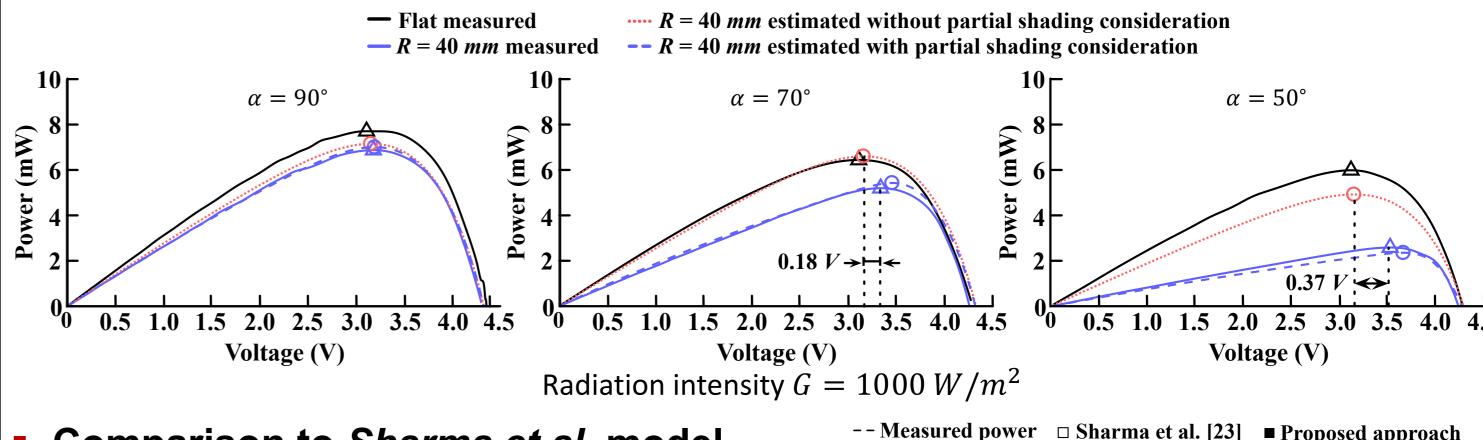
- Partial shading has significant impact on the harvested energy
 - Shaded cells act as power consumers in a PV-string
 - Bending a PV-string changes the amount of radiation at each PV-cell
- Refine the proposed model to account partial shading

Current-Voltage Modeling of PV-cells

- An equivalent circuit model for a PV-string
 - Using a single diode equivalent circuit model considering recombination losses
 - A single diode equivalent circuit model is not enough to consider partial shading
 - The equivalent circuit consists of multiple single diode equivalent circuits connected in series

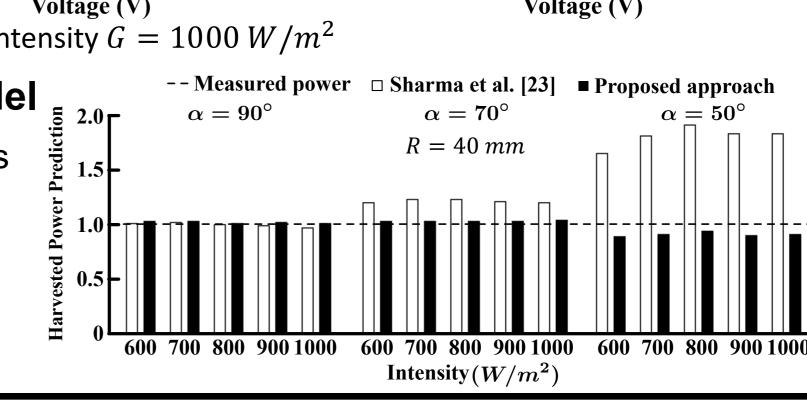
 $I_{PV_i} = I_{ph_i} \cdot (1 - \frac{d_I^2}{\mu \tau_{eff}(V_{bi} - V_{d_i})}) - I_{o_i} \cdot (e^{\frac{d_i}{A \cdot V_t}} - 1) - \frac{V_{d_i}}{R_{sh_i}}$ $I_{ph_i} = a_{IPH} \cdot \left(\frac{\lambda_i}{W \cdot (\frac{L}{n_s})}\right)^{b_{IPH}}$

- Without bypass diodes: $I_{PV} = I_{PV_1} = I_{PV_2} = \cdots = I_{PV_{n_s}}$
- With bypass diodes: $I_{PV} = I_{PV_1} + I_{D_1} = I_{PV_2} + I_{D_2} = \dots = I_{PV_{n_s}} + I_{D_{n_s}}$


Model Validation

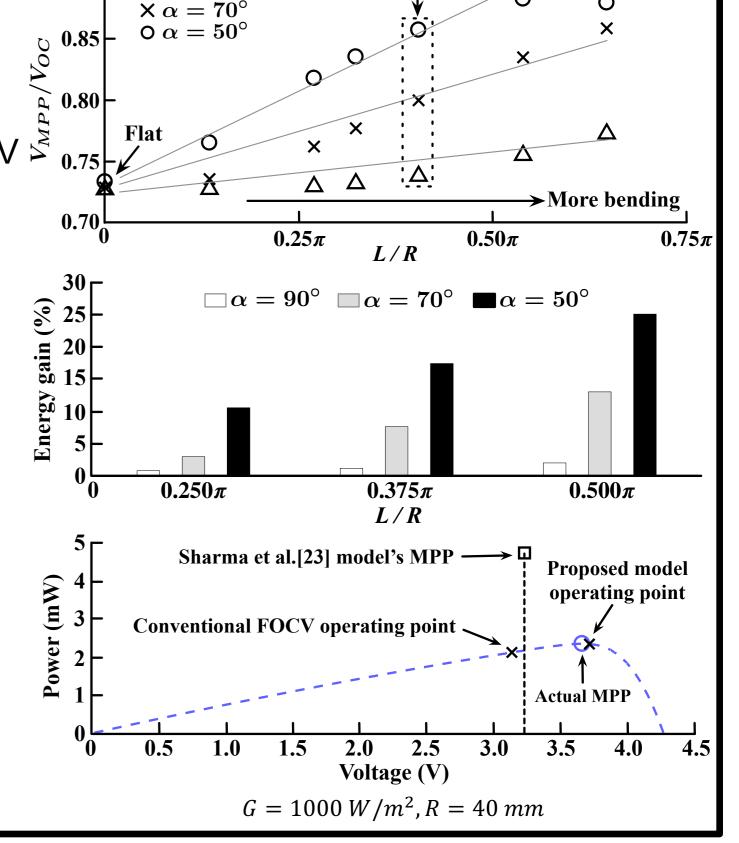
PV-cell parameter extraction

- Use commercial PV-cell: FlexSolarCells SP3-12
- Radiation intensity: $100\sim1000 W/m^2$
- Maintain the temperature of PV-cell constant
- The relative percentage error of the $P_{MPP} < 5.3\%$


Flexible PV-cell model validation

• Relative percentage error of $P_{MPP} < 10.5\%$

Comparison to Sharma et al. model


- Sharma et al. model shows high errors when elevation angle changes
 - No consideration of elevation angle
 - Rely on regression analysis to fit a nonlinear model

Measured
△ Measured MPP
Modeled
Modeled MPP

Improved Fractional Open-Circuit Voltage MPPT

- FOCV MPPT assumes V_{MPP}/V_{OC} does not vary significantly with radiation intensity
- V_{MPP}/V_{OC} increases linearly when a flexible PV $\stackrel{>}{>} 0.75$ $\stackrel{|}{\sim} 1.75$ is bent
- The rate of increase is a function of elevation angle α
- Consider V_{MPP}/V_{OC} changes to set the operating point
 - Accounting for bending increases the harvested energy up to 25.0%
- Importance of accurate model
 - Improved FOCV MPPT gain according to the V_{MPP} model
 - Sharma el al. model: 4.6 %
 - Proposed model: 18.8%

Runtime Operation and Overhead Analysis

- Implemented with a TI CC2650 processor
- Total computation overhead is less than 1% (0.9 ms out of 100 ms)

Parameter	Operation	Overhead	Period
Radius of curvature <i>R</i>	Read a flex sensor	2.7 μs	100 ms
Inclination angle eta	Compute using accelerometer	570.7 <i>μs</i>	100 ms
V_{OC}	Read V_{OC}	30.5 <i>μs</i>	100 ms
V_{MPP}	Compute and set V_{MPP}	277.8 μs	100 ms
Elevation angle $lpha$	Get time/location from BLE	2.4 ms	10 min
	Calculate $lpha$	1.0 ms	10 <i>min</i>

Conclusions

- Energy harvesting is the one of most important problems in wearable IoT devices
- Bending has a dramatic impact on the harvested energy
- We presented a Flexible PV-cell modeling for energy harvesting
- We achieve 1.8% and 4.8% estimation error for V_{MPP} and P_{MPP} , respectively
- Our analytical model leads up to 25.0% increase in harvested energy when used with MPPT algorithm
- The details can be found in [1]

References

[1] Jaehyun Park, Hitesh Joshi, Hyung Gyu Lee, Sayfe Kiaei, and Umit Y. Ogras. "Flexible PV-cell Modeling for Energy Harvesting in Wearable IoT Applications," in ACM Tran. on Embedded Comp. Sys. (ESWEEK Special Issue), October 2017.

