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§ Smart phones have a highly heterogeneous processor 
§ Power and performance change as a function of:

1. Configurations
2. Workloads

§ Good Power-Performance tradeoff does not mean good 
Energy-Performance tradeoff

§ Dynamically selecting the optimal config is challenging
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Find optimal Config (𝒄𝒌∗ )
{𝟐𝐋, 𝟏	𝐆𝐇𝐳,	
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Step 1: Instrumentation

{𝟒𝐋, 𝟐	𝐆𝐇𝐳,	
𝟒𝐁, 𝟐	𝐆𝐇𝐳}

Output (𝒄𝒌∗ )
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Step 2: Characterization 
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Example:

Phase-3 is similar to Phase-1 
Use the same optimal 
configuration as Phase-1

Step 3: Classification

{𝟐𝐋, 𝟏	𝐆𝐇𝐳, 𝟑𝐁, 𝟏	𝐆𝐇𝐳}
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Step 4: Online Selection
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Blackscholes application – 2T
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clustering Feature data (𝒙𝒌)

Optimal config (𝒄𝒌∗ )
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Find 𝑷𝒓	(𝐂	 = 	 𝒄𝒌∗ 	|	𝐗	 = 	𝒙𝒌)
to solve for 𝒄𝒌∗

Read new feature 
data (𝒙𝒌) and stored 𝜷

At runtime
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Repeat	benchmark	(𝒏𝒓)
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𝒏𝒃 Number	of	big	cores
𝒏𝒍 Number	of	little	cores
𝒏𝒇 Number	of	frequencies
𝒏𝒓 Number	of	iterations
𝒇𝒍 Little	core frequency
𝒇𝒃 Big	core frequency

§ 3 iterations of each benchmark 
at different configuration

§ Profile 18 benchmark, leading 
to 4467 distinct workload
snippets

§ Time spent for one 
benchmark is about 1-2 
hours
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§ Use	the	model	coefficient	matrix	𝜷
stored	in	the	platform	(~282	bytes)

§ The	conditional	probability	is	computed	
at	runtime	for	each	of	the	𝑵 classes

§ The	class	with	the	highest	probability	is	
assigned	to	the	system
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§ Odroid-XU3	board	
§ Exynos 5422	
§ Octa-core	CPU
§ Ubuntu	OS	
§ Linux	Kernel	v3.10
§ 18	Applications
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§ Our technique successfully finds the Pareto-optimal configurations at runtime 
as a function of the workload [1]

§ DyPO-Energy achieves 25% and 55% gain in PPW compared to Aalsaud*-
Offline and Aalsaud*-ADA [2], respectively

§ Experiments show 93%, 81% and 6% larger performance per watt (PPW) 
compared to the interactive, ondemand and powersave governors

§ The details can be found in [1].
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