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Abstract— Small form-factor and low-cost wearable devices
enable a variety of applications including gesture recognition,
health monitoring and activity tracking. Since these devices
are severely constrained by battery capacity, energy harvesting,
and optimal use of the harvested energy are critical to make
them practical. This paper considers optimal gesture recognition
using self-powered devices. Given a harvested energy budget, we
propose an approach to maximize the number of gestures that
can be recognized under accuracy constraints.We construct a
computationally efficient optimization algorithm with the help
of analytical models derived using a detailed energy consump-
tion breakdown of a wearable device prototype. Our empirical
evaluations demonstrate up to 2.4× increase in the number of
recognized gestures compared to a manual optimization.

I. INTRODUCTION

Wearable internet of things (IoT) devices are becoming
popular due to their small form factor and low cost [4]. Small
form factor enables interesting applications including gesture-
based control, health monitoring, and activity tracking [3], [5],
[8], [22]. However, it also limits the battery capacity,which
is one of the major obstacles for widespread adoption of
wearable IoT devices [23].

Wearable devices cannot rely on high capacity batteries used
in smartphones due to their relatively large size and heavy
weight (2100 mAh @ 42 g) [11]. Lighter flexible batteries
cannot be used alone either, since they have modest capacities
(200 mAh @ 1.2 g) [9]. Therefore, harvesting energy from
ambient sources is crucial to relieve from the dependence
on batteries [7]. Recent research shows that photovoltaic
cells (PV-cells) can provide 10–100 mW/cm2 density [21].
Wearable devices can greatly benefit from this harvesting
potential, since they can be personalized for each user. For
example, the device can learn the usage patterns, and adapt
the operating points to its user.

In this work, we consider wearable devices powered primar-
ily through ambient energy sources, as illustrated in Figure 1.
Since the amount of the harvested energy sets the available
energy budget, the device has to maximize the work performed
under this energy budget. To this end, we employ gesture
recognition as the target domain, because it has a wide range
of wearable applications, such as gesture-based control and
interaction with robots assistive devices. More precisely, we
maximize the number of gestures dynamically under energy
budget and accuracy constraints. This problem is convoluted
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Fig. 1. Wearable gesture recognition system.

by three major challenges. First, accurate energy consumption
and gesture recognition accuracy models are needed to guide
this optimization. Second, this problem should be solved at
runtime with minimum implementation overhead. Finally, to
be credible, the optimization methodology has to be validated
using an energy harvesting device and user subject studies.

This report presents a novel methodology to maximize the
number of gestures that can be recognized under energy budget
and accuracy constraints. To achieve this goal, we designed the
wearable device whose components are illustrated in Figure 1.
It consists of an energy harvesting subsystem, a microproces-
sor, a 3-axis accelerometer, a 3-axis gyroscope and Bluetooth
low energy (BLE) interface (detailed in Section III). Using
this prototype, we characterize the power consumption of
the accelerometer, microprocessor and BLE while performing
gesture recognition.Then, we develop a compact energy model
that can be used at runtime by the proposed optimization
approach. Similarly, we analyze the recognition accuracy as
a function of the gesture recognition duration by performing
user studies. Finally, we present a computationally efficient
algorithm to maximize the number of recognized gestures
under the energy budget and accuracy constraints. We show
that the proposed approach increases the number of gestures
that can be recognized by up to 2.4× compared to manual
optimization.

In summary, the major contributions of this report are as
follows:

• A detailed energy consumption analysis for wearable
gesture recognition devices and analytical models,

• An algorithm to maximize the number of recognized
gestures under the given energy budget and accuracy
constraints,

• Empirical evaluations using a wearable device prototype
demonstrate up to 2.4× increase in the number of rec-
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ognized gestures compared to manual optimization.
The rest of the report is organized as follows. We review

the related work in Section II. We present the system overview
and the proposed algorithm in Section III and Section IV,
respectively. Finally, we discuss the experimental results in
Section V, and summarize the conclusions in Section VI.

II. RELATED WORK

Wearable IoT devices have been studied extensively due
to their form factor and cost advantages. Researchers have
proposed sensor networks, gesture-based control, health mon-
itoring, and activity monitoring as potential applications of
IoT devices [12], [18]. Significant amount of research has also
focused on wearable devices with energy harvesting [7], [17].
For instance, a jacket with solar and thermal energy harvesting
is proposed in [7]. Similarly, a multi-sensor wearable bracelet
with body heat harvesting is proposed in [17].

Energy harvesting in IoT devices has necessitated the de-
velopment of energy management and energy allocation algo-
rithms for wearable IoT devices [6], [14], [20]. For example,
the algorithm proposed in [14] allocates the duty cycle of a
wireless sensor node for every control interval. The authors
employ a linear programming model to maximize the work
performed in a day. Allocation of duty cycle is equivalent to
energy allocation, since we can easily derive the energy from
the duty cycle. Similarly, [6] uses a dynamic programming
approach to perform a near-optimal energy allocation for self-
powered wearable devices. In this work, we assume that
the energy budget for each time horizon is provided by a
similar algorithm. Then, we maximize the number of gestures
recognized under this energy budget.

Power-aware computing is critical for wearable devices due
to limited energy budget. Therefore, recent research has fo-
cused on an accuracy-power trade-off in wearable devices [15],
[16], [26]. For instance, the technique presented in [26] uses a
dynamic sensor selection to minimize the power consumption
of a gesture recognition body area network. This leads to
a maximization of the network lifetime. The work in [15]
proposes an algorithm to perform optimal feature selection in
wearable sensor networks. In contrast to these approaches, we
propose a novel runtime algorithm that maximizes the number
of gestures that can be recognized in a given time horizon.
We first formulate the problem as a nonlinear optimization
problem. Then, we use experimental measurements on a
wearable device to derive a low complexity solution to the
problem.

III. TARGET SYSTEM OVERVIEW

A. Energy harvesting device prototype

The target wearable device shown in Figure 2 harvests
energy using PV-cells and an energy harvesting circuit. Since
the harvested energy is intermittent and exhibits significant
variations over a day [2], we also employ a 1 g battery with 45
mAh capacity, as shown in Figure 2. The battery stores surplus
energy and powers the target device, when the harvested
energy is not sufficient. The power circuitry consists of a PV-
cell SP3-37 [10], Lithium-polymer battery PGEB0054338 [9]

and a MPPT charger TI BQ25504 [24]. In addition, the
target system includes a TI CC2650 microprocessor [25] with
1.3 mW average power consumption and Invensense motion
processing unit MPU-9250 [13].

When attached to user’s hand, the wearable device captures
the hand motion using the 3-axis accelerometer. Then, the
microprocessor processes the data to recognize the intended
gesture. Finally, the decoded gesture is transmitted to the target
physical system through the BLE interface. The amount of
harvested energy determines the energy budget that can be
exploited by the device. To be practical, this system has to
maximize the number of intended operations (i.e., in our case
gesture recognition) under this budget, while maintaining a
minimum level of recognition accuracy. Therefore, we propose
a methodology to maximize the number of recognized gestures
with a given energy budget and accuracy constraint.

(a) Mounted prototype (b) Prototype with a PV-cell and a battery

Fig. 2. Gesture recognition prototype used in this work.

B. Problem formulation

Given the characteristics of the energy harvesting system,
we can determine the energy that can be harvested over a
finite horizon th. We use this amount as the energy budget
Eb available for the wearable device. We define the gesture
recognition duration tg as the time spent by the device to infer
a single gesture. The wearable device actively senses the hand
motion and processes the data during this period, which takes
a portion of th. We denote the number of gestures recognized
within the finite horizon by Ng(tg), since it is a function of
the gesture recognition duration. The energy consumption per
gesture Eg(tg) is a function of tg , because tg determines the
active time of the processor and sensor. Similarly, the energy
consumption of the device during the idle time is denoted by
Ei(tg).

Finally, the energy consumed for transmitting the recog-
nized gesture is denoted by Ecomm. With this notation, we
formulate the maximization of Ng(tg) as:

maximize Ng(tg) such that (1)
Etotal(tg)=Eg(tg)·Ng(tg)+Ei(tg)+Ecomm≤Eb (2)

Gacc(tg)≥Gacc,min (3)

The first constraint in this formulation ensures that the
total system energy consumption is less than the energy
budget. The second constraint guarantees that the accuracy
of the gesture recognition Gacc(tg) is greater than a minimum
accuracy Gacc,min. Note that Gacc(tg) is a function of tg ,
since tg determines the number of data points used for gesture
recognition given the sampling frequency.

Solving the optimization problem given by Equations 1–3
at runtime is not easy, since both the objective and constraints
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are nonlinear. Moreover, system dependencies make it hard to
model the behavior of Eg(tg) and Ei(tg).

C. Overview of the proposed approach

The energy consumed per gesture is an increasing function
of the gesture recognition duration tg , since longer duration
increases the active time of the sensors and processor. While
precise characterization requires a detail model as developed
in Section IV-A, it can be conceptually illustrated by the left
axis in Figure 3. Hence, the gesture recognition duration tg is
bounded from above by the given energy budget Eb. Similarly,
the gesture recognition accuracy is expected to improve, if
a larger number data samples and longer processing time is
used. Again, its precise behavior can be found only after
user studies, but we can conceptualize it as a non-decreasing
function of the gesture recognition duration, as illustrated by
the right axis in Figure 3. Consequently, a minimum accuracy
requirement bounds the gesture recognition duration tg from
below regardless of the shape of the curve. As a result, the
feasible region for the optimization problem is the intersection
of the regions for energy and accuracy, as highlighted in
Figure 3.

To quantify a solution within the feasible region, we need
to express the total energy consumption as a function of the
gesture recognition duration, i.e., we need to model Eg(tg)
and Ei(tg). Then, we need to find an expression for Ng(tg)
such that it can be maximized within the feasible region. We
solve this optimization problem through following steps:
1) Develop the gesture recognition algorithm on the target

hardware and characterize the power consumption of indi-
vidual components (Section IV-A),

2) Using this characterization, construct mathematical energy
consumption models (Section IV-B),

3) Using the mathematical models, find an expression for
Ng(tg) and its maximum point (Section IV-C),

4) Finally, combine the output of step 3 with the lower bound
on tg given by the gesture recognition accuracy Gacc,min to
find the optimal solution. We characterize Gacc(tg) through
user studies presented in Section V-C.

IV.ENERGY-OPTIMAL GESTURE RECOGNITION

A. Gesture recognition algorithm and energy characterization

We define five gestures made by hand – backward, forward,
left, right, and wave – as shown in Figure 4. In addition,
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Fig. 3. Energy budget and minimum accuracy requirements constrain the
gesture recognition duration tg from above and below, respectively. Hence,
we maximize the number of recognized gestures within the feasible region.

we include a stationary gesture to detect when the device is
inactive. To classify these gestures, one can use a variety of su-
pervised learning algorithms, such as support vector machine
(SVM), decision tree, logistic regression, and neural network
(NN). Selecting the appropriate algorithm depends on the
input data size, accuracy and latency requirements, as well as
available computational power and memory. In our application,
the input is provided by a 3-axis accelerometer with 50 Hz
sampling rate. Since common gestures take approximately 0.8
s [1], a baseline implementation with tg =0.8 s leads to
3 × 50 Hz × 0.8 s = 120 input features. We target 90%
or higher accuracy on a small IoT device. Finally, we aim
at a flexible solution that can be easily extended to more
number of gestures and input features. While both SVM and
NN implementations meet the accuracy requirement on our
test data, we adopt NN due to its flexibility.

Our programmable solution allows changing the number
of hidden layers and neurons. The specific instance used in
the experiments has a single hidden layer with 4 neurons and
sigmoid activation function. These parameters are sufficient to
achieve recognition accuracy above 90%. The input layer uses
the input features to feed data into the hidden layer. The output
layer has 6 neurons, one corresponding to each gesture. The
sixth output neuron is added to separate the five gestures from
a stationary gesture. The output layer evaluates the probability
of each gesture. We employ two versions of the NN for the
gesture recognition application:

• Baseline NN uses all 120 accelerometer samples collected
by the 3-axis accelerometer during tg as input features.

• Reduced NN employs transformed features derived from the
raw accelerometer data. We utilize the minimum, maximum
and mean values of each axis (x, y, z) over tg . Hence, this
amounts to a total of 9 input features. Since the number of
transformed features does not depend on tg , we can change
it at runtime.

Operation and energy measurements: Figure 5 shows the
power consumption of the microprocessor and the sensor (i.e.,
accelerometer) while processing one gesture. The dashed blue
and solid red lines represent the measured power consumption
of the microprocessor and the sensor, respectively. Initially,
the system waits for user motion in the idle state. When the
user makes a gesture, the accelerometer sensor wakes the
system up, and performs a preprocessing routine to prepare
the accelerometer and microprocessor. Then, the accelerometer
starts sampling the motion data for a duration of tg . We
observe two different levels of power consumption in the
sensor. The sensor power consumption is close to zero during
idle state, while it consumes around 2 mW power in the
active state. The power consumption also exhibits peaks during
the state transitions because of pre- and post- processing of
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WaveLeft and RightForwardBackwardBackward Forward Left or Right WaveWaveLeft and RightForwardBackwardBackward Forward Left or Right WaveWaveLeft and RightForwardBackwardBackward Forward Left or Right Wave
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Fig. 4. Illustration of the target gestures.
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Fig. 5. Power consumption during a gesture recognition when tg = 400 ms.

data acquisition. Once the data acquisition is completed, the
microprocessor processes the sensor data, and transmits the
recognized gesture using BLE. Unlike the sensor, the power
consumption of the microprocessor shows periodic peaks,
which are caused by the BLE module to maintain an active
connection. In addition, pre-processing and post-processing
tasks cause larger peaks in the microprocessor power.

B. Energy modeling

Energy characterization shown in Figure 5 provides useful
insights, but it cannot be used directly to solve our opti-
mization problem. Hence, we model the energy behavior of
the gesture recognition system with the help of these power
consumption measurements.
Active state energy: The energy consumption per gesture
Eg(tg) consists of energy consumption of the microprocessor,
Eµp
act(tg), and of the sensor, Esen

act (tg) in active states, as
follows:

Eg(tg) = Eµp
act(tg) + Esen

act (tg) (4)

The active microprocessor energy consumption can be mod-
eled by adding the peak components to the common static
energy consumption as follows:

Eµp
act(tg) = Pµpcom · tg + Eµp

pre + Eµp
post(tg) (5)

where Pµpcom, Eµp
pre, and Eµp

post are the microprocessor’s com-
mon static power consumption, preprocessing energy con-
sumption, and post processing energy consumption, respec-
tively. Note that the energy consumption of preprocessing does
not depend on tg .

Similarly, the sensor energy consumption can be written as:

Esen
act (tg) = P sencom · tg + Esen

pre + Esen
acq (tg) + Esen

post(tg) (6)

where P sencom, Esen
pre , Esen

acq (tg) and Esen
post(tg) are the sensor’s

common static power consumption, the preprocessing energy
consumption, the data acquisition energy, and the post pro-
cessing energy consumption, respectively.
Idle state energy: The energy consumption of the system
during the idle state is described as follows:

Ei(tg) = Eµp
idle(tg) + Esen

idle(tg) (7)

where Eµp
idle(tg) and Esen

idle(tg) are the total energy con-
sumption of the microprocessor and the sensor in idle state,
respectively. The idle time of system can be calculated by

subtracting total active time from th. The energy consumption
of microprocessor Eµp

idle(tg) can be modeled as below:

Eµp
idle(tg) = Pµpcom (th − tg ·Ng(tg)) (8)

Similarly, the sensor does not have any operation during the
idle state. Hence, Esen

idle(tg) can be written as:

Esen
idle(tg) = P sencom (th − tg ·Ng(tg)) (9)

Communication energy: Since the BLE communication uses
a fixed time interval tconn to maintain the connectivity, the
wearable system uses the upcoming slot to transmit the data.
Hence, the energy consumption caused by BLE communica-
tion Ecomm during the time horizon th can be described as
follows:

Ecomm = th/tconn · Econn (10)

where Econn is energy consumption of BLE packet exchange.
Note that Econn is the additional energy consumption due to
BLE communication. Hence, we have to consider the common
static energy consumption when we calculate the energy per
bit transmission.

We use the measured energy consumption values to obtain
the constant terms in the energy models of the microprocessor
and the sensor. Using these values, the energy models are
expressed in terms of tg . Detailed validation of the energy
model is presented in Section V-B, while the numeric values
are summarized in Table I.

C. Optimization methodology

The goal of the optimization problem is to maximize
Ng(tg). Therefore, we start with expressing Ng(tg) as a
function of processor and sensor energy consumption. Using
Equations 1 and 2, we can express Ng(tg) as:

Ng(tg) ≤
Eb − Ecomm − Ei(tg)

Eg(tg)
(11)

By substituting Ei(tg) and Ecomm using Equations 8-10, we
can re-write Equation 11 as:

Ng(tg) ≤

(
Eb − th/tconn · Econn − (Pµpcom + P sencom) · th
+ (Pµpcom + P sencom) · tg ·Ng(tg)

)
Eg(tg)

Now, substituting the components of Eg(tg) using Equations 5
and 6 we can write:

Ng(tg) ≤

(
Eb − th/tconn · Econn − (Pµpcom + P sencom) · th
+ (Pµpcom + P sencom) · tg ·Ng(tg)

)
(
Eµp
pre + Eµp

post(tg) + Esen
pre + Esen

acq (tg) + Esen
post(tg)

+ (Pµpcom + P sencom) · tg

)
Finally, we can simplify the above equation to express Ng(tg)
as:

Ng(tg) ≤
Eb − th/tconn · Econn − (Pµpcom + P sencom) · th

Eµp
pre + Eµp

post(tg) + Esen
pre + Esen

acq (tg) + Esen
post(tg)

(12)
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The numerator of Equation 12 represents the dynamic energy
budget for gesture recognition. It is evaluated by subtracting
BLE energy consumption and idle energy consumption as we
have to spend this energy at a minimum to keep the system
running. The denominator of Equation 12 gives the dynamic
energy consumption of one gesture recognition. The number
of gestures Ng is maximized when we minimize the dynamic
energy consumption of one gesture recognition. Next, we will
show that maximizing Ng is equivalent to minimizing tg .

Lemma 1. The denominator of Equation 12 is positive, and
it is an increasing function of tg .

Proof. (1) All the addends in the denominator of Equation 12
represent the energy consumptions. Hence, their sum is posi-
tive.
(2) The accelerometer acquires data uniformly with a given
sampling frequency. Hence, the amount of sensor data in-
creases with tg . This means that the processor and sensor have
to do more processing as tg increases. Therefore, Esen

acq (tg),
Eµp
post(tg) and Esen

post(tg) are increasing function of tg , while
the remaining two terms are independent of tg . Therefore, their
sum, i.e., the denominator, is an increasing function of tg .

Lemma 2. The numerator of Equation 12 is nonnegative.

Proof. Ng is nonnegative since it is a physical operation. The
denominator of Equation 12 is positive as stated by Lemma 1.
Therefore, the numerator of Equation 12, which is a product
of a positive and a nonnegative quantity, is nonnegative.

The following theorem summarizes our major result, which
enables a computationally efficient solution for maximizing
Ng(tg).

Theorem 1. Maximizing Ng(tg) is equivalent to minimizing
tg .

Proof. We can see from Equation 12 that the numerator
is independent of tg . Moreover, Lemma 2 establishes that
the numerator of Equation 12 is non-negative. Therefore,
Ng(tg) is maximized when the denominator of Equation 12
is minimized. Lemma 1 establishes that the denominator of
Equation 12 is an increasing function of tg . This means that the
denominator is minimized when we have the lowest possible
tg . Therefore, maximizing Ng is equivalent to minimizing
tg .

Theorem 1 states that Ng is maximized when we reduce tg .
At the same time, tg is bounded from below by the accuracy
constraint Gacc,min. Therefore, the optimization problem is
solved by choosing the minimum tg that meets the accuracy
constraint.

V. EXPERIMENTAL EVALUATION

A. Experimental setup
Wearable system: We use the in-house wearable prototype
described in Section III-A. It features test ports to measure
the power consumption of the microprocessor and the MPU
separately. Power measurements are performed using NI PXIe-
4081 and PXIe-4080 digital multimeter systems [19] with
5 kHz sampling frequency.

Gesture recognition: The wearable device uses the NN to
detect the gesture and transmits it to a host device. The host
device stores the detected and the reference gesture. We use
30 data sets from seven users to test the accuracy of the
gesture recognition system. Each set has a series of 50 gestures
presented in random sequence. 10 data sets are reserved for
training the NN. The training data is further divided into 80%
training, 10% cross-validation and 10% test data. We obtain
96.5%, 97.4%, and 98.4% accuracy for the training, cross-
validation and test data, respectively. The remaining 20 data
sets are used for testing the accuracy of the NN. They are
never seen by the NN during the training to reliably test the
robustness of our gesture recognition system.

B. Energy model validation

The energy consumption of gesture recognition system is
measured, when the system runs with baseline and reduced
NNs. We sweep the gesture recognition duration tg of the
reduced NN from 400 ms to 800 ms, in increments of 100
ms, while tg of the baseline NN is 800 ms. Note that the
baseline NN does not support different tg because it uses raw
sensor data as inputs of NN.

The energy consumption of the key model parameters and
their definitions are summarized in Table I. We use these
parameters and the energy models presented in Section IV-B
to compute the energy consumption per gesture. Figure 6
compares the modeled energy consumption with the measured
data. Each bar shows the average energy consumed per ges-
ture, where the average is taken over 60 random gestures. We
achieve a mean percentage error of only 1.1% for the baseline
NN. Similarly, the error ranges from 2.5% to 3.1% for the
reduced set. Finally, the maximum modeling error observed
across all data points is 5.2%.

C. Accuracy analysis

We analyze the accuracy of the gesture recognition applica-
tion through experiments that involve seven different users. For
each experiment, the user is given a series of 50 gestures in
a random sequence. Each user repeats the experiment three
times to obtain a larger data set. We observe greater than
90% detection accuracy for the reduced NN when the gesture
recognition duration tg > 380 ms, as shown in Figure 7.
There is a significant degradation in accuracy when tg is
reduced below 380 ms. We observe this behavior because

800 400 500 600 700 800

tg (ms)

0

1

2

3

4

5

En
er

gy
 (m

J)

1.1%

3.1% 2.6% 2.5% 2.8% 2.6%
Measured Modeled

Baseline Reduced

Fig. 6. Comparison of the energy consumed per gesture with the measured
data. The number above the bars shows the mean percentage error.



TECHNICAL REPORT 6

TABLE I
THE ENERGY MODEL PARAMETERS AND VALUES

Parameter Description Value Parameter Description
Values

Baseline Reduced
Econn BLE connection energy 28.5 nJ tconn BLE connection interval 66 ms 200 ms

Pµpcom
Microprocessor

1301.2 nW Eµp
post

Microprocessor
187.4 nJ 167.6·tg−45.7 nJ

common static power post processing energy
P sencom Sensor common static power 149.4 nW Esen

post Sensor post processing energy 27.9 nJ 26.9·tg+7.3 nJ

Eµp
pre

Microprocessor
91.3 nJ Esen

acq Sensor data acquisition energy 1140.2 nJ 1132.0·tg+10.0 nJ
preprocessing energy

Esen
pre Sensor preprocessing energy 110.2 nJ
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Fig. 7. Accuracy of gesture recognition for all the users.

a lower tg does not allow sufficient time for the NN to
sufficiently differentiate between the gestures. Moreover, there
may not be sufficient time to complete a gesture, when tg
is not long enough. For example, the accuracy for the wave
gesture degrades faster than the rest of the gestures, since a
larger number of samples is required to extract its signature.
Hence, we use tg = 380 ms as the lower bound of the gesture
recognition time. We also note that the accuracy of the baseline
NN degrades more rapidly with reducing tg , since it uses all
the data points. We aim to preserve the same level of accuracy
(≈90%) for the baseline NN.

D. Optimization results

Inputs to the proposed optimization methodology are the
time horizon and corresponding energy budget. Since the
harvested energy can fluctuate rapidly due to environmental
conditions, we assume a 1-minute finite horizon and ana-
lyze the optimization results for energy budget Eb={120 mJ,
180 mJ, 240 mJ}. We also note that larger time horizon does
not change the percentage savings significantly, as it does not
change the proposed algorithm. For comparisons, we use the
baseline NN and a manually optimized version of the baseline
NN by increasing the BLE connection interval tconn to reduce
the BLE overhead. Our solution (labeled as Reduced) uses the
proposed optimization algorithm and the same tconn as the
manually optimized baseline. Throughout the experiments, we
enforce a minimum gesture recognition accuracy of 90%.

When the energy budget is 120 mJ, the baseline NN is
able to recognize only 4 gestures in one minute, since the
static energy and BLE communication consume 72.5% and
21.6% of the energy budget, respectively. The baseline method

120 180 240
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N
g

4
15
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43
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56 56

135Baseline (tconn=66ms)
Baseline (tconn=200ms)
Reduced (tconn=200ms)

Fig. 8. Comparison of the number of recognized gestures for various energy
budgets.

can recognize 15 gestures by reducing BLE communication
energy with longer tconn. The proposed optimization provides
an additional 2× boost and increases Ng to 31, as shown in
Figure 8. Increasing the energy budget to 180 mJ and 240 mJ
benefits the baseline NN significantly. Nevertheless, our op-
timization approach still provides 2× and 2.4× improvement
over the optimized baseline, respectively. In particular, when
the energy budget is 240 mJ, the maximum number of gestures
that can be recognized by our approach is limited by the 1-
minute time horizon, not the energy budget.

We illustrate the optimization results in more detail in
Figure 9(a) and (b). The implicit upper bound induced by th
is shown with the dotted curve, while the accuracy constraint
is illustrated by the vertical dashed line. The result obtained
with the baseline NN is the point labeled with the 4 marker.
In contrast, our optimization approach enables us to vary the
number of gestures Ng(tg) along the solid curve. This curve
is a decreasing function of tg , as the proof of Theorem 3.1
shows. Hence, the optimal point is determined as the minimum
gesture recognition duration, as stated by Theorem 3.1. When
the energy budget is increased to 240 mJ, Ng(tg) curve is
shifted up, as shown in Figure 9(b). This means larger number
of recognized gestures as expected. We note that, Ng(tg) starts
intersecting the timing constraint given by the dashed curve.
As a result, the constraint due to time horizon (tg·Ng(tg) ≤ th)
determines the maximum number of gestures. Hence, the
optimal point is at the corner of the feasible region.

VI. CONCLUSIONS

Wearable IoT devices are becoming popular in interesting
applications such as gesture-based control due to their small
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Fig. 9. Illustration of the optimal solution for different energy budgets.

form factor and low cost. Battery life limitation is one of the
major issues of wearable devices. Hence, energy harvesting
and optimal use of the harvested energy are critical. We
presented an optimization approach to maximize the number
of gesture can be recognized under the energy budget and
accuracy constraints. We show that the proposed algorithm
shows up to 2.4× improvement in the number of recognized
gestures over the optimized baseline.
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